
LLM Integration Architecture¶
This diagram provides a detailed view of the NeuroCognitive Architecture (NCA) LLM integration system.
%%{init: {'theme': 'dark', 'themeVariables': { 'primaryColor': '#242424', 'primaryTextColor': '#fff', 'primaryBorderColor': '#555', 'lineColor': '#f8f8f8', 'secondaryColor': '#2b2b2b', 'tertiaryColor': '#1a1a1a'}}}%%
graph TB
classDef main fill:#1a1a1a,stroke:#555,color:#fff
classDef component fill:#242424,stroke:#555,color:#fff
classDef subcomponent fill:#2b2b2b,stroke:#555,color:#fff
classDef adapter fill:#203040,stroke:#555,color:#fff
classDef model fill:#302030,stroke:#555,color:#fff
classDef request fill:#203020,stroke:#555,color:#fff
classDef provider fill:#302020,stroke:#555,color:#fff
classDef external fill:#383838,stroke:#555,color:#fff
subgraph LLMIntegration["LLM Integration System"]
direction TB
class LLMIntegration main
subgraph CoreComponents["Core LLM Components"]
direction TB
class CoreComponents component
subgraph Connectors["LLM Connectors"]
direction TB
class Connectors adapter
APIConnector[API<br>Connector] --- LocalConnector[Local<br>Connector]
WebsocketConnector[Websocket<br>Connector] --- StreamingConnector[Streaming<br>Connector]
class APIConnector,LocalConnector,WebsocketConnector,StreamingConnector subcomponent
end
subgraph Providers["LLM Providers"]
direction TB
class Providers provider
OpenAIProvider[OpenAI<br>Provider] --- AnthropicProvider[Anthropic<br>Provider]
VertexAIProvider[VertexAI<br>Provider] --- HuggingFaceProvider[HuggingFace<br>Provider]
OllamaProvider[Ollama<br>Provider] --- CustomProviders[Custom<br>Providers]
class OpenAIProvider,AnthropicProvider,VertexAIProvider,HuggingFaceProvider,OllamaProvider,CustomProviders subcomponent
end
subgraph ModelManagement["Model Management"]
direction TB
class ModelManagement model
ModelRegistry[Model<br>Registry] --- ModelVersion[Model<br>Versioning]
ModelSelection[Model<br>Selection] --- ModelCaching[Model<br>Caching]
FallbackModels[Fallback<br>Models] --- ModelLoadBalancing[Load<br>Balancing]
class ModelRegistry,ModelVersion,ModelSelection,ModelCaching,FallbackModels,ModelLoadBalancing subcomponent
end
subgraph EmbeddingModels["Embedding Models"]
direction TB
class EmbeddingModels model
TextEmbeddings[Text<br>Embeddings] --- ChunkEmbeddings[Chunk<br>Embeddings]
QueryEmbeddings[Query<br>Embeddings] --- DocumentEmbeddings[Document<br>Embeddings]
EmbeddingCaching[Embedding<br>Caching] --- EmbeddingOptimization[Embedding<br>Optimization]
class TextEmbeddings,ChunkEmbeddings,QueryEmbeddings,DocumentEmbeddings,EmbeddingCaching,EmbeddingOptimization subcomponent
end
end
subgraph RequestProcessing["Request Processing"]
direction TB
class RequestProcessing component
subgraph RequestFormation["Request Formation"]
direction TB
class RequestFormation request
PromptStructuring[Prompt<br>Structuring] --- ContextInjection[Context<br>Injection]
ParameterConfig[Parameter<br>Configuration] --- RequestValidation[Request<br>Validation]
class PromptStructuring,ContextInjection,ParameterConfig,RequestValidation subcomponent
end
subgraph ResponseHandling["Response Handling"]
direction TB
class ResponseHandling request
ResponseParsing[Response<br>Parsing] --- ResponseValidation[Response<br>Validation]
StreamProcessing[Stream<br>Processing] --- ErrorHandling[Error<br>Handling]
class ResponseParsing,ResponseValidation,StreamProcessing,ErrorHandling subcomponent
end
subgraph RequestOptimization["Request Optimization"]
direction TB
class RequestOptimization request
TokenOptimization[Token<br>Optimization] --- CostOptimization[Cost<br>Optimization]
LatencyOptimization[Latency<br>Optimization] --- QualityOptimization[Quality<br>Optimization]
class TokenOptimization,CostOptimization,LatencyOptimization,QualityOptimization subcomponent
end
end
subgraph IntegrationSupport["Integration Support"]
direction TB
class IntegrationSupport component
subgraph Telemetry["LLM Telemetry"]
direction TB
class Telemetry adapter
UsageTracking[Usage<br>Tracking] --- CostTracking[Cost<br>Tracking]
LatencyMonitoring[Latency<br>Monitoring] --- QualityMonitoring[Quality<br>Monitoring]
class UsageTracking,CostTracking,LatencyMonitoring,QualityMonitoring subcomponent
end
subgraph Security["LLM Security"]
direction TB
class Security adapter
CredentialManagement[Credential<br>Management] --- PromptSecurity[Prompt<br>Security]
OutputFiltering[Output<br>Filtering] --- DataPrivacy[Data<br>Privacy]
class CredentialManagement,PromptSecurity,OutputFiltering,DataPrivacy subcomponent
end
subgraph Testing["LLM Testing"]
direction TB
class Testing adapter
ModelEvaluation[Model<br>Evaluation] --- OutputValidation[Output<br>Validation]
RegressionTesting[Regression<br>Testing] --- PromptTesting[Prompt<br>Testing]
class ModelEvaluation,OutputValidation,RegressionTesting,PromptTesting subcomponent
end
end
end
%% External connections
IntegrationManager[Integration<br>Manager] --> Connectors
IntegrationManager --> Providers
IntegrationManager --> ModelManagement
MemorySystem[Memory<br>System] --> EmbeddingModels
ContextManager[Context<br>Manager] --> RequestFormation
TemplateManager[Template<br>Manager] --> RequestFormation
%% Internal connections
Connectors --> Providers
Providers --> ModelManagement
ModelManagement --> RequestProcessing
EmbeddingModels --> RequestOptimization
RequestFormation --> Connectors
ResponseHandling --> MemorySystem
RequestOptimization --> RequestFormation
Telemetry --> ModelManagement
Security --> RequestFormation
Testing --> ModelManagement
%% External provider connections
OpenAIProvider --> OpenAIAPI[OpenAI<br>API]
AnthropicProvider --> AnthropicAPI[Anthropic<br>API]
VertexAIProvider --> VertexAIAPI[VertexAI<br>API]
HuggingFaceProvider --> HuggingFaceAPI[HuggingFace<br>API]
OllamaProvider --> OllamaAPI[Ollama<br>Local]
%% Node styling
class IntegrationManager,ContextManager,TemplateManager,MemorySystem,OpenAIAPI,AnthropicAPI,VertexAIAPI,HuggingFaceAPI,OllamaAPI external
LLM Integration Architecture Components¶
The NCA LLM integration system provides a framework for connecting the cognitive architecture with various language model providers. It consists of the following key components:
Core LLM Components¶
- LLM Connectors:
- API Connector: Connects to LLMs via REST APIs
- Local Connector: Connects to locally hosted LLMs
- Websocket Connector: Connects to LLMs via websocket interfaces
-
Streaming Connector: Handles streaming responses from LLMs
-
LLM Providers:
- OpenAI Provider: Interface for OpenAI models
- Anthropic Provider: Interface for Anthropic models
- VertexAI Provider: Interface for Google's VertexAI models
- HuggingFace Provider: Interface for HuggingFace models
- Ollama Provider: Interface for local Ollama models
-
Custom Providers: Framework for custom LLM interfaces
-
Model Management:
- Model Registry: Central registry of available models
- Model Versioning: Manages model versions
- Model Selection: Selects appropriate model based on requirements
- Model Caching: Caches model results for efficiency
- Fallback Models: Provides fallback options when primary models fail
-
Load Balancing: Balances load across models
-
Embedding Models:
- Text Embeddings: General text embedding capabilities
- Chunk Embeddings: Embeddings for text chunks
- Query Embeddings: Specialized embeddings for queries
- Document Embeddings: Specialized embeddings for documents
- Embedding Caching: Caches embeddings for efficiency
- Embedding Optimization: Optimizes embedding generation
Request Processing¶
- Request Formation:
- Prompt Structuring: Formats prompts for optimal LLM interaction
- Context Injection: Injects relevant context into prompts
- Parameter Configuration: Configures request parameters
-
Request Validation: Validates requests before sending
-
Response Handling:
- Response Parsing: Parses LLM responses
- Response Validation: Validates responses for correctness
- Stream Processing: Processes streaming responses
-
Error Handling: Handles errors in LLM responses
-
Request Optimization:
- Token Optimization: Optimizes token usage
- Cost Optimization: Optimizes for cost efficiency
- Latency Optimization: Optimizes for low latency
- Quality Optimization: Optimizes for response quality
Integration Support¶
- LLM Telemetry:
- Usage Tracking: Tracks LLM usage metrics
- Cost Tracking: Tracks LLM costs
- Latency Monitoring: Monitors response latency
-
Quality Monitoring: Monitors response quality
-
LLM Security:
- Credential Management: Manages LLM API credentials
- Prompt Security: Ensures prompt security
- Output Filtering: Filters sensitive information from outputs
-
Data Privacy: Ensures data privacy in LLM interactions
-
LLM Testing:
- Model Evaluation: Evaluates model performance
- Output Validation: Validates model outputs
- Regression Testing: Tests for regressions
- Prompt Testing: Tests prompt effectiveness
External Connections¶
The LLM integration system connects with: - Integration Manager: Coordinates LLM integrations - Memory System: Provides embeddings and stores LLM responses - Context Manager: Provides context for LLM requests - Template Manager: Provides templates for LLM requests
The LLM integration system also connects to external LLM provider APIs: - OpenAI API: For OpenAI models - Anthropic API: For Anthropic models - VertexAI API: For Google's VertexAI models - HuggingFace API: For HuggingFace models - Ollama Local: For local Ollama models
The LLM integration system is designed to provide a unified, robust interface to various language models, with support for fallbacks, telemetry, security, and testing.